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The flow of a viscous fluid from a point or line source on an inclined plane is analysed 
using the equations of lubrication theory in which surface tension is neglected. At 
short times, when the gradient of the interfacial thickness is much greater than that 
of the plane, the fluid is shown to spread symmetrically from the source, as on a 
horizontal plane. At  long times, the flow is predominantly downslope, with some 
cross-slope spreading for the case of a point source. Similarity solutions for the long- 
time behaviour of the governing nonlinear partial differential equations are found for 
the case in which the volume of fluid increases with time like t", where a is a constant. 
The two-dimensional equations appropriate to a line source are hyperbolic in the self- 
similar regime and the similarity profile is found analytically to end abruptly at a 
downslope position which increases like t(2u+1)/3. Inclusion of higher-order terms in the 
analysis resolves this frontal shock into a boundary-layer structure of width 
comparable to the thickness of the current. Owing to the term representing cross- 
slope spreading, the mathematical structure of the equations is considerably more 
complex for flow from a point source and the similarity form is found numerically in 
this case. Though the downslope and cross-slope extents of the current again increase 
with time according to a power-law if a > 0, they also depend on a power of lnt if 
a = 0. The leading-order near-source structure is shown to be that of steady flow 
from a constant-flux source of strength given by the instantaneous flow rate. For 
sources with a > 1, the contact line advances at all points on the perimeter of the flow 
and the entire plane is eventually covered by the flow ; for sources with 0 c a c 1, 
only a portion of the contact line is advancing at any time and only that part of the 
plane with IyI < cx3u/(4a+3) is eventually covered, where x and y are the downslope and 
cross-slope coordinates and c is a constant. The theoretical spreading relationships 
and planforms are found to be in good agreement with experimental measurements 
of constant-volume and constant-flux flows of viscous fluids from a point source 
on a plane. At very long times, however, the experimental flows are observed to be 
unstable to the formation of a capillary rivulet at  the nose of the current. 

1. Introduction 
The buoyancy-driven flow of a dense fluid over a rigid boundary is a well studied 

and important fluid-mechanical problem with many applications. While much of the 
early work focused on the large-Reynolds-number gravity currents found a t  the 
boundaries of the Earth's oceans, atmosphere and lakes, more attention has been 
paid recently to the viscous gravity currents relevant to geological applications and 
to a range of industrial processes. In this paper we present similarity solutions for the 
fundamental problem of a viscous gravity current generated by a point or line source 
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of fluid on an inclined plane. We consider flows with volumes proportional to t", thus 
including the important cases of fixed-volume (a = 0 )  and fixed-flux (a = 1) release. 

The present analysis extends a number of previously published results. Schwartz 
& Michaelides (1988) described a numerical simulation of a flow on an inclined plane 
with constant injection through a finite circular hole. Huppert (19824 found 
similarity solutions for the spread of a viscous fluid of volume proportional to f over 
a rigid horizontal plane in both axisymmetric and two-dimensional geometries. We 
show below that these solutions also represent the short-time behaviour of flows on 
an inclined plane. We focus, therefore, on the unstudied long-time behaviour for 
which the slope of the plane provides the dominant contribution to  the buoyancy and 
there is strong asymmetry between the upslope and downslope directions. For the 
case of a point source of fluid, i t  is found that the near-source behaviour is given at 
leading order by Smith's (1973) solution for steady flow on an inclined plane from a 
constant-flux source, but evaluated at the instantaneous rate of efflux. Higher-order 
corrections arise from the variation in the source flux (a + 1)  and the finite 
downstream extent of a current that started at  t = 0. 

Though Huppert's (1982 a )  solutions neglected the contact-line effects and 
capillary forces a t  the nose of the current, they were found to be in excellent 
agreement with experimental observations, thus demonstrating that the details of 
the nose condition did not matter and that the spread was governed by a simple 
global balance between buoyancy and viscous forces. It was also found that, for the 
case of point release, the flow rapidly approached a stable axiysmmetric planform. 
Adifferent behaviour was observed by Huppert (1982 b )  for the two-dimensional flow 
of a fixed volume of fluid on an inclined plane. The initial behaviour was again well 
described by a solution based on a viscous-buoyancy balance. However, a t  a critical 
distance downslope from the line of release, the previously straight front of the 
current developed a capillary instability with a characteristic cross-slope wavelength. 
This instability grew rapidly so that the downslope flow was eventually concentrated 
in fingers or rivulets extending down the plane from near the location of the onset of 
instability. 

Despite further experimental, theoretical and numerical studies (Silvi & Dussan V. 
1985; Troian et al. 1989; Schwartz 1989; Hocking 1990), a theoretical instability 
criterion that is fully consistent with the experimental observations of both the onset 
and the wavelength of the instability has not yet emerged. This may be attributed, 
at least in part, to the difficulty of adequately modelling a moving contact line. 
Interestingly, a number of different models of the contact line (Troian et aE. 1989; 
Hocking 1990; Goodwin & Homsy 1991) all predict a small capillary bulge 
immediately behind the undeformed front. It thus seems likely that the instability 
is driven by cross-slope gradients in capillary pressure, induced by variations in the 
thickness of this bulge, in a manner analogous to the capillary breakup of a liquid jet. 

In  $ 5 2 4  we present a theoretical description of flow from point and line sources on 
a plane based only on a viscous-buoyancy balance. Inertial and surface-tension 
forces are assumed to be negligible everywhere, as are the effects of diffusion or 
mixing at the fluid interface. Except possibly at  very early times, the extent of the 
flow will be much greater than its thickness, suggesting the use of lubrication theory. 
The problem is defined and the basic equations derived in $2. These equations are 
solved analytically for the case of a line source, allowing the frontal and near-source 
structure of the solutions to be determined in $3. The insight derived from these two- 
dimensional solutions is used in $4 to discuss the case of a point-source release for 
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which analytic solution is not possible except in the case u = 0 and the equations 
must be solved numerically. 

Formally, the neglect of surface tension and contact-line effects in the theory will 
be valid if the Bond number B = pgL2/n B 1 ,  where p is the density, g is the 
acceleration due to gravity, L is the cross-slope lengthscale of the current and u is the 
coefficient of surface tension. As described in $5 ,  the theoretical predictions are found 
to be in very good agreement with experimental observations of lengths, widths and 
shapes of fixed-flux and fixed-volume currents from a point source. At  very long 
times, however, when the current is thin and slowly moving, interfacial effects start 
to play a role. A capillary rivulet, similar to those described by Huppert (1982b), is 
observed to form at the nose of the current and channels the flow downslope, 
inhibiting further cross-slope spreading. We conclude that the main evolution of the 
flow is well described, as in Huppert (1982a), by a simple viscous-buoyancy balance, 
but that the flow ultimately becomes unstable at some critical distance downslope. 

2. Lubrication equations and scaling 
Suppose a fluid of constant density p and viscosity ,u is released onto a plane 

inclined at  an angle 8 to the horizontal. Let x denote the downslope coordinate 
measured from the point or line of release, y the cross-slope coordinate, z the 
coordinate normal to the plane and h(x,y) the depth of the fluid layer. After a 
sufficient length of time the extent of the flow will be much greater than its thickness 
and hence we assume that lVhl 4 1, where V denotes the gradient operator in the 
(x,y)-plane. The effects of inertia and surface tension are assumed to be negligible. 
From these assumptions it follows that the fluid pressure and velocity are given by? 

p = pg{(h--z)cos8-xsin8}, (2.1) 

We substitute into the depth-averaged equation of continuity for the flow to 
obtain 

- ah - - pgsine -{cot 8; (hS g) + cot 8&(hS =--) ah -3 ah3 
at 3,u 

It should be noted that, since we have assumed IVh) 4 1, we also require tan 8 4 1 if 
the second term on the right-hand side of (2.3) is to be comparable with the third. 

We consider point and line sources of fluid of strength such that the volume 
released onto the plane is proportional to t"(t  2 0) ,  where u 2 0. Thus we look for 
solutions of (2.3) subject t o  the volume constraint 

h dy dx = Qt" (point source), l: I:::, (2.4) 

l: h dx = qt" (line source), (2.5) 

where the perimeter of the flow is given by IyI = yp(x, t )  in xT(t) c x < xN(t) for a point 

t As shown by Huppert (1982a), a current under a deep layer of overlying fluid of density pa < p 
may be described by the above analysis with g replaced by g' = g(p-p.)/p, since the stress exerted 
by the ambient fluid on the flow is negligible. 
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source, and the (two-dimensional) flow lies in xT(t) < x < xN(t) for a line source. For 
later comparison with experimental measurements we define yM(t) to be the 
maximum value of yp(x, t )  at  time t .  

We define dimensionless variables T = t /T*, X = x / X * ,  Y = y/Y* and H = h / H * ,  
where 

l / ( a + 3 )  2a+l l / ( a + 3 )  

T*=(&) 
, X* = y* = H* cg = (s) (point source), (2.6) 

1/(a+2) 2a+l 1/ (a+2)  

T* = (5) , X* = H*c,  = (F) (line source), (2.7) 

c, = cot 0 and R = pg sin 0/3p. Expressed in the dimensionless 
reduce to the forms 

variables, (2.3)-(2.5) 

!P (point source), 

(2.8u, b)  

_ -  aH a aH aH3 
x~ (2.9a, b )  aT-EkE) -x '  Ix, H d X  = !P (line source), 

Since a is the only dimensionless parameter in (2.8) and (2.9), this scaling shows the 
universality of the evolution of all flows with a given value of a and 0 < 0 @ 1. 

By looking for possible asymptotic balances, (2.8) and (2.9) can be rescaled again 
to show the behaviour a t  early and late times. For example, in order to consider 
t 4 T* for a point source, we define dimensionless variables 5?,if, P and H using the 
scales AT*, h(3a+1)/8X*, h(3a+1)18Y* and h(a-1)/4H*, where h 4 1, instead of those given 
by (2.6). We find that 

^ A , .  

- = V . ( H 3 V H )  +O(h("+3)/8) (point source, early times, h 6 l ) ,  ( 2 . 1 0 ~ )  
aH 
a? 

with the form of the volume constraint (2.8b) unaltered. Similarly, in order to  
consider t % T*, we use scales AT*, A(4a+3)/9X*, Aal3Y* and A(2a-3) /9H*,  where A % 1, 
to obtain 

-$=-&-&s a 
a B 3 + ~ ( ~ - ( 2 a + 3 ) / 9 )  (point source, late times, A 9 1). 

(2.10 b )  

The early- and late-time solutions for a line source are found by the scalings AT*, 
A(3a+l)/5X* and h(2a-1)/5H*, where h < 1 and 

or by the scalings AT*, A(2a+1)/3X* and ~ f ( ~ - l ) / ~ H * ,  where A B 1 and 

(line source, late times, A B 1 ) .  (2.11b) 

These rescalings are illuminating for three reasons. Firstly, solutions of the 
limiting forms of (2.10) and (2.1 1 )  as h + 0 or A --f 03 represent similarity solutions for 
the early- and late-time behaviour. The asymptotic dependence of the dimensions of 
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I I 

Downslope extent Cross-slope extent Thickness 
Source Limit X Y h 

Point t 6 T* - ( Q ~ R  cos e t 3 u + l ) t  - ( Q ~ R  cos ,9t3=+1)8 &La-' f - -  
( R  COS 0)) 

(RcosB) 

( R  sin 8) 

Point t % T* 

- &zt2"-l f 

t % T* (Q2Rsin e t s a + l ) i  - @-'  5 

- -  Line t < T* - (Q3R cos 0 t 3Q+l ) i  

N -  
Line 

TABLE 1 .  Asymptotic scalings for the dimensions of a viscous gravity current on an inclined plane. 
The value of T* is defined by (2.6) or (2.7),  and R = g ' /3u  where g' denotes the reduced gravity and 
u the kinematic viscosity. The results for t + T* reduce to those of Huppert (1982 a) when cos 0 = 1. 
As described in $4.4, when 01 = 0 the long-time scalings for a point source need to be modified by 
terms involving In ( t /T*) .  

the current is then readily deduced from the scalings used to derive the similarity 
form. For example, the self-similar scaling with respect to AT* and 
A(2a+1)/3X* for a line source at late times shows that x N / X *  - (t /T*)(2a+1)/3.  The 
dimensional form of these results is summarized in table 1. Secondly, it may be seen 
that there is a transition when t = O(T*),  OF T = 0(1) ,  from a regime in which 
ahlax % t an0  (equivalently BH/aX 9 1 )  and the spreading current is unaffected by 
the slope to a regime in which ahlax -4 t a n 0  (equivalently aH/aX 4 1)  and current 
flows dominantly downslope; X * , Y *  and H* are the typical dimensions of the 
current a t  the time of transition. This transition may be seen, for example, in the 
computed evolution ofX,(T) and Y,(T) for a = 1 shown in figure 1. It may be noted 
that the early-time behaviour can only be described by the lubrication approximation 

21 FLY 242 
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if t an6  4 1 ,  but that  the long-time behaviour will always eventually lie in the 
lubrication regime. Thirdly, the limiting forms of (2.10a) and (2.11a) show that the 
early-time behaviour is given by the solution for the spread of a gravity current on 
a horizontal plane derived by Huppert (1982a). Therefore, we shall now focus on the 
unstudied intermediate- and long-time behaviour. 

In  order to obtain the approach to  the long-time similarity solution, we first define 
s = In T. For the case of a point source we then substitute 6 = XT-(4a+3)/9 , 7 = YT-"I3 
and $(s, 6,111) = HT--(2a-3)J9 into (2 .8a)  to obtain 

where subscripts denote differentiation. For a line source, we substitute 
6 = XT--(2a+1)/3 and $(s, 6) = HT-(a-1)/3 into (2.9a) to obtain 

(2.13) 

In  both cases, the source a t  X = 0 corresponds to a volume influx at 6 = 0 of constant 
strength a, and the volume constraints (2.8b) and (2.9b) become s$ = 1. The long- 
time similarity solutions are given by equating $$ and the exponentially small terms 
to zero in (2.12) and (2.13). These solutions may be found numerically by retaining 
the term 48 and integrating with respect to s until a steady state is attained. 

3. Line sources 
The long-time solution for a line source may be determined analytically. This is 

particularly welcome since the structure of the solution obtained offers valuable 
insight into the more complicated problem of a point source for which analytic 
solution is not possible except in the case a = 0. 

3.1. The long-time similarity solution 
The long-time similarity solution of (2.13) satisfies 

d 2 a + l  4 = &-54-$3). 

This equation may be integrated using the integrating factor 43a'(1-a) to obtain an 
implicit expression for the similarity profile 

where Po = $ ( O ) .  From (3 .1)  the limit of the downslope flux as 6-0, is $: and hence 
$,, = a%. The location gN and height $N of the nose are determined by the volume 
constraint, J $ = 1,  to be 

3 ( 2a ) ( 1 + 2 4 / 3 ,  

A fixed-volume release is described by 

i T G  

$ = (ic);, cN = 3/23, 

(3 .3a,  b )  

(bN = 2-t (a = O ) ,  (3.4) 
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a 

FIGURE 2. (a) The similarity solution (3.2) for the thickness of a two-dimensional flow with volume 
proportional to t" for a number of values of a, which is fed from a line source on an inclined plane. 
(b)  The similarity constants (3.3) for a line source as functions of a. 

as shown by Huppert (1982b), and a fixed-flux release approaches the simple form 

$ = l ,  & = 1 ,  & = 1  (a=l). (3.5) 

Solutions for other values of a are shown in figure 2. 

3.2. The structure at the source and nose 
It will be noticed that the similarity solution (3.2) ends abruptly a t  E = 0 (unless 
01 = 0) and a t  E = tN. Mathematically, this behaviour reflects the fact that the limit 
s+ co is a singular perturbation of (2.13) caused by the loss of the highest 6- 
derivative. Physically, the discontinuous profile may need to be resolved by the 
inclusion of surface tension (Huppert 1982b; Troian et al. 1989; Hocking 1990) or by 
thc abandonment of lubrication theory where lVhl 4 1 (Goodwin & Homsy 1991). 
However, the experimental results of Huppert (1982a, b )  indicate that, provided the 
flow dos not become unstable, the breakdown of the viscous-buoyancy balance or of 
the lubrication approximation in a small neighbourhood of the contact line does not 
affect the self-similar structure of the majority of the flow or the global spreading 
rate. 

If tan 6 < 1 and B %- 1 the details of the flow near the contact lines are still 
described to leading order by the simple viscous-buoyancy balance expressed by 

21-2 
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FIGURE 3. The structure of the two-dimensional flow near a line source at 0 on an inrlined plane. 
Downslope from the source the flow is given by the similarity solution (3 .2) .  ITpslope from the 
source is a nearly stagnant pond of fluid with horizontal upper surface. The pond slowly increases 
in depth (a  > 1) or is fed by a draining film from a previous ‘high-water’ level (a < 1 ) .  

( 2 . 9 ~ ) .  An asymptotic analysis for the case a = 0 is given by Grundy (1983). For the 
general case, we resolve the frontal shock by the boundary-layer scaling 
x = (&“-()e(z+2)e/3 with respect to which the leading-order terms as [+tN are 

This equation can be integrated from q5 = 0 at  x = 0 to obtain 

where & = {+(2a+ 1)“);. Equation (3.7) implies that  $ + c $ ~  as x - 2  00. Thus the 
condition of matching between the boundary-layer solution and (3.2) is that the 
limiting value & given in this section should be the same as that given by (3.3b). 
This condition is satisfied for the value of CN given by (3.3a). It may be shown that 
this ability to match a frontal boundary-layer structure to the main flow follows from 
the structure of (3.1) and the constraint on the total volume. 

As noted above, if a > 0 there is also a backwards-facing discontinuity a t  f ;  = 0 
which is resolved by a boundary-layer structure.7 The leading-order solution is a 
flat nearly-stagnant pond H ( X ,  T )  = a?P(”-1)/3 +X (or in similarity variables 
q5 = a~+5e(a+z)s/3) lying upstream from the source (figure 3).  This pond is either filling 
slowly or emptying slowly, depending on whether H ( 0 ,  T )  is increasing or decreasing 
or, equivalently, whether a is greater than or less than 1 .  Thus, in a formal expansion 
of the solution of (2.13). the solution for a flat pond would itself need to be matched 
either to an advancing contact line at  X = X ,  (a > 1)  or to a thin film which drains 
fluid from the previous ‘high-water mark’ into the pond (a < 1) .  

Finally we note that $ cc xi as x + O  in (3.6), showing that, even if t a n 8  < 1,  the 
lubrication approximation used here must break down in a subdomain of the frontal 
structure (see Goodwin & Homsy 1991). Here again we note the experimental 
observation that the breakdown of our analysis in the immediate vicinity of the 
contact line has a negligible effect on the predicted flow (Huppert 1982w, 6 ) .  

7 If a = 0 the  square-root singularity at 6 = 0 in (3 .4a)  may be resolved in a similar manner 
(Grundy 1983). 
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4. Point sources 
The long-time structure of flow from a point source is considerably more 

cornplicatcd than that from a line source. Some useful results can be derived by 
asymptotic analysis of the flow near the source and near thc contact line ~ ~ ( 6 ) .  These 
are discussed briefly below, omitting much of thc mathematical detail for simplicity. 
However, except in the case a = 0, the solutions of the nonlinear partial differential 
equations must ultimately be determined numerically by a scheme such as that 
described in Appendix A. 

4.1. The near-source structure (a  =I= 0) 
Owing to  the diffusive terms in (2.8a),  changes in the source flux and in the location 
of thc contact line are immediately felt throughout the flow. Nevertheless, we expect 
that  changes in the flow close to the source will be dominated by the cffccts of 
changes in the value of the source flux. By seeking a balance between the three terms 
on the right-hand side of (2.8a) and the instantaneous flux aP-', we are motivated 
to rescale the equations by defining X = H / L ,  % = X / L  and (Y = Y / L ,  where 
I, = (aT"-l)f. Assuming that X', % and % are O(l), we find that 

and that the source strength has now been scaled to unity. Thus with these scalings 
the near-source flow is seen to  approach a steady structure, which is independent of 
a. A numerical solution of (4.1) is shown in figure 4.t 

It may be noted that the solution of (4.1) is a quasi-steady approximation of the 
near-source solution of (2.8). As with the quasi-steady flat pond lying upslope from 
the line source in the solution of (2.9), the solution of (4.1) needs to be matched either 
to a slowly advancing contact line (a > 1) or to a thin film which drains fluid from 
previously wetted areas of the plane (a  < 1). In the case a 2 1 figure 4 shows that the 
limit of upslope flow is given by X, - 0.92T("-1)/4. In the case a < 1 the limit of 
upslope flow is attained when T = 0(1) and is constant thereafter. 

As X + co, the solution of (4.1) asymptotes to the similarity solution given by 
Smith (1973) for the steady flow far downstream of a constant-flux source. In  this 
regimc (4. I )  and the source-flux condition can be approximated as 

with errors of order 97:. It is readily shown that the similarity solution of (4.2) is 
given by 

(4.3) 

where P = (12005/108)f, as was first derived and verified experimentally by Smith 
(1973). Comparison of the scalings used to derive (4.1) with those used to derive 
(2.12) shows that (4.2) and (4.3) give the leading-order behaviour of (2.8) in the 
region 6 + 1 and X $ 1. Expressed in the unscaled variables, the solution of (2.8) is 
described by (4.3) in the region P - l ) l 4  Q X Q T(40+3)/9; the term (H3H,) ,  cannot be 
neglected in X = O(T("-1)/4) and the term H ,  cannot be neglected in X = O(T(40f3)/B) 
(see figure 5 ) .  

t As 5, 3 + 0 ,  &' - [In Wlf, where W2 = 52+3z. Thus the lubrication approximation breaks 
down in a subdomain near the source of radius 9 - tan B/lln tan 01s + 1 .) 
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- 4  - 3  -2 - 1  0 1 2 3 4 
Y 

FIQURE 4. The quasi-steady near-source solution (4.1) for flow from a point source on an inclined 
plane. The dashed line represents the limiting form %Y = (12005X3/108)'/7 for the perimeter of the 
flow as %+a. 

FIGURE 5. The asymptotic similarity structure for a flow of volume T" from a point source, for the 
case 0 < a < 1. The figure shows the regions of validity of (4.1)-(4.4), where the scalings of the 
downslope distance X are defined by E = XT-(4Q+3)19 and I = X(UT"-' ) - ' /~ .  In < 1 < X the region 
of active flow is given by lyl < P(aP- 'X3) l / '  and the total area covered by the flow is 
IyI < cX3a/(4a+3), where P and c are constants. In  the case a 2 1 the entire flow is active and the 
contact line is advancing at all points. 

4.2. Solutions near the contact line 

The long-time similarity solution of (2.12) satisfies 

(4.4) 

in 171 < rp((), where 0 < 6 < EN. From the definitions of the similarity variables, a 
fixed point ((,a) in similarity space represents a trajectory YX-3a'(4a+3) = constant in 
physical space. When the flow has entered the self-similar regime T 9 1 it follows 
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FIGURE 6. Contours of equal thickness in the similarity solutions of (4.4) for a flow of volume 
proportional to tb from a point source on an inclined plane : (a) a = 0.05, ( b )  a = 0.25, (c) a = 1.0, 
( d )  a = 4.0. 

that a point ( f l ,  rP(fl)) on the perimeter of the flow represents an advancing contact 
line if 

a stationary contact line if equality holds and a retreating contact line if the 
inequality is reversed. However, if surface forces are neglected, it is easily shown that 
a retreating contact line cannot occur within lubrication theory and so only the first 
two possibilities are relevant. 

It is clear that the contact line is advancing near the downslope nose. From $4.1, 
the flow near the source is described by (4.1) and occupies a region that is shrinking 
if a < 1 and growing if a > 1. We may thus distinguish three cases. Firstly, if 
0 < a < 1 the contact line is stationary in some region fl  < constant, fixed at the 
‘ high-water mark ’ it  attained when the flow had been stronger. By integrating (4.5) 
with equality, we deduce that the stationary part of the contact line is described by 
rpfl-3a/(4a+3) = constant and hence only that part of the plane with Iyl < cx3a/(4a+3) is 
eventually covered by the flow as t + co, where c is a constant. The region between 



642 J .  R .  Lister 

1 
1 2 3 

a 

FIGURE 7 .  The coefficients of the dimensionless downslope and cross-slope extents, X ,  and Y,, of 
a viscous flow of volume !P on an inclined plane in the long-time regime ; X ,  - 6,  T(4a+a)'g and 
YM ; 7, !P3 as T --f cc. The singularity at a = 0 represents the occurrence of powers of In T in the 
similarity scaling for a fixed-volume release. 

0 

the stationary contact line and the asymptotic region of flow, given by (4.3) as 
IyI d P ( a ! P 1 X 3 ) ) ,  is occupied by a thin draining film of fluid (figure 5). Secondly, if 
a = 1 the contact line advances continually at all points but, a t  any fixed value of 
X, approaches the position given by the solution of (4.1). For 3 % 1 this is given by 
Iy1 = P$. Thus, for 01 = 1 also, only part of the plane is eventually covered by the 
flow, but in this case the flow does not abate and there is no region covered by a thin 
draining film. Finally, if u > 1 then the contact line advances continually at all 
points and all regions of the plane, upslopc and downslope, are eventually covered by 
the flow. 

For an advancing contact line where q5(tp, yp) = 0 the leading-order terms in (4.4) 
are 

By resolving into coordinates normal and tangential to the contact line, it is readily 
shown that an appropriate solution of (4.6) only exists if dyp/dc is finite and satisfies 
(4.5). Moreover, when -dyP/dt % 1 an cxtension of this analysis shows that the flow 
near thc contact line has the boundary-laycr structure (3.7) where x is the normal 
distance from the contact line scaled by (-dy,/dc)-; and $N is the thickness of  the 
interior flow. Where (-dy,/d&)-i @ e-(a+3)s'9 very close to the nose (tN, O),  the term 
e-2(~+3)S /9  (q53q5E)4 in (2.12) must be retained to resolve the frontal shock structure (cf. 
the discussion in $3.2). 

4.3. Numerical solutions 

Numerical integration of (2.8) shows that the flow from a point source does indeed 
approach a long-time similarity solution described by (4.4). This solution is most 
easily calculated by integrating (2.12) to steady state with the exponentially small 
term neglected, as described in Appendix A. The numerical results, shown in figure 
6 for a few values o f a ,  confirm the local analyses given in $54.2 and 4.3. In particular, 
the steep front of the profile for all values of a along the downslope portion of the 
contact line is striking. A t  small values o f  a the regions of active and draining flow 
are sufficiently large to  be seen clearly. The values of EN and qM, shown in figure 7, 
allow the asymptotic extent of the current to  be calculated, from which it is 
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FIGURE 8. Contours of equal thickness in the numerical solution of (4.7) for the long-time evolution 
of a fixed-volume point release (a = 0) at s z 300. The solution in the interior of the flow is given 
by 4 - (fLJ”’; the flow continues to spread laterally as fluid is redistributed from the nose to the 
sides through the boundary layer at the edge of the flow. 

straightforward to compare the theoretical prediction with experiments. The 
singularities in cN and qM as a + 0 reflect the result given below, that the dimensions 
of the flow are not described by a simple power-law in time in the case a = 0. 

4.4. The case a = 0 
Thus far we have concentrated on the case a > 0. If we ignore the exponentially 
small terms in (2.12) for the case a = 0 we obtain 

9, = (4td-93)6+(939v)7 (a = 0). (4.7) 

In  this equation the outward diffusive flux -d3d7 in the 7-direction cannot reach 
equilibrium since there is no balancing inward flux -$a79 as there was in (4.4.) for 
a $. 0. This suggests that the 7-scale increases continually and there is no steady 
similarity solution in (6, V)-space. 

As s-t co the solution of (4.7) will satisfy tN 3 qM. A simple scaling argument 
shows that the terms involving 7-derivatives are then much smaller than those 
involving <-derivatives through most of the flow. Hence the dominant balance in 
(4.7) is 

(4&-d3)5 - 0 (4.8) 

with solution $J Iv (48; (171 < 7 P L  (4.9) 

Equation (4.8) is a singular perturbation of (4.7) and consequently (4.9) does not 
satisfy the boundary condition = 0 on r,~ = yp(t).  Hence, we expect that  there will 
be a thin boundary layer around the contact line in which the term involving 7- 
derivatives is as important as those involving 6-derivatives. The form of the interior 
solution (4.9) and the existence of such a boundary layer are confirmed by numerical 
integration of (4.7) (figure 8). The boundary layer carries a net lateral flux which 
redistributes fluid from the nose of the flow towards the sides. Detailcd analysis of 
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(a) Expt. 

1 
2 
3 
4 
5 
6 
7 
8 

9 
10 
11 
12 
13 

(b )  Expt. 

14 
15 
16 
17 
18 
19 
20 
21 
22 

Fluid 

Silicone 
Silicone 
Silicone 
Glycerol 
Glycerol 
Glycerol 
Glycerol 
Glycerol 

Syrup 
Syrup 
Syrup 
Syrup 
Syrup 

Fluid 

Silicone 
Silicone 
Silicone 
Silicone 
Silicone 
Silicone 
Syrup 
Syrup 
Syrup 

Q 1' 

(em3 s-l) (cm2 s-')  

1.48 
1.48 
1.48 
7.30 
8.40 
8.90 

31.30 
31.30 

0.23 
0.34 
0.77 
2.09 
2.09 

Q 
(cm3) 
67 

130 
254 
255 
255 
26 1 

1770 
1770 
2327 

11.3 
11.3 
11.4 
10.3 
8.4 
7.9 
7.4 
7.6 

35.4 
36.0 

173.5 
34.6 
34.6 

V 

(cm2 s-l) 

1.18 
1.18 

11.4 
11.4 
11.4 

1.22 
250 
192 
36.6 

g' 
(rm s - * )  

98 1 
98 1 
98 1 
98 1 
98 1 
98 1 
98 1 
981 

262 
262 
30 1 
262 
262 

g' 
(cm s-'-') 

98 1 
98 1 
98 1 
98 1 
98 1 
98 1 
98 1 
98 1 
98 1 

0 

2.5 
5.0 

10.0 
5.0 
5.0 

10.0 
5.0 

10.0 

10.5 
14.3 
10.5 
17.5 
17.5 

0 

2.5 
2.5 
2.5 
5.0 

10.0 
2.5 
9.7 
9.7 
9.7 

("1 

(") 

T* X * . Y *  
( s )  (cm) 

38.2 10.9 
9.5 5.4 
2.4 2.7 
5.9 7.9 
5.0 7.8 
1.2 3.9 
3.2 10.5 
0.8 5.3 

21.7 3.0 
10.7 2.4 
47.5 5.8 
4.3 3.1 
4.3 3.1 

T* X * , Y *  
( s )  (em) 
3.8 11.5 
3.0 14.4 

23.3 17.8 
3.7 14.3 
0.6 11.3 
2.5 18.2 
7.1 21.8 
5.5 21.8 
1.0 23.9 

Symbol 

0 
A 
0 
0 
X 

+ 
A 
0 
0 
0 
A 
rn 

Symbol 

# 

a 
0 

X 

+ 
0 
0 
A 

TABLE 2. The experimental parameters. The fluids used were silicone oil MS200/1000, two aqueous 
solutions of glycerol and a sugar syrup diluted with a little glycerol to make it less viscous. (a) 
Fixed-flux release ; ( b )  Fixed-volume release. 

this flux, given in Appendix B, allows the decrease in cN and increase in vM with s to 
be calculated. I n  physical space the results are 

(4.10) 

as T-tco. 

5. Experimental results 
The theoretical solution (3.4) for downslope flow from a linear fixed-volume release 

has been verified experimentally by Huppert (1982b). As shown by (2.10a), the 
early-time behaviour of a point release on a slope is equivalent to axisymmetric 
spread on a horizontal surface. Huppert (1982a) derived a theoretical solution for 
spread in the latter situation and showed that it gave excellent agreement with 
experimental measurements. We now compare our long-time theoretical predictions 
for point release on a slope from constant-flux and constant-volume sources with the 
results of experiments. The data presented as Experiments 1-8 and 14-19 were very 
generously provided by M. A. Hallworth and H. E. Huppert. In both these 
experiments and our own the fluid viscosities and densities were determined by U- 
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FIGURE 9. The dimensionless downslope and cross-slope extents, X,(T)  and Y,(T), of viscous flows 
from a constant-flux point source in Experiments 1-8 and from solution of (2.8). The flows were 
all in air. The parameters and symbols used are summarized in table 2. 

tube viscometer and hydrometer. The volumes and flow rates were then readily 
calculated from the mass of fluid released onto the slope. The experimental 
parameters are summarized in table 2. Measurements of the extent of the currents 
were either made directly or taken from photographs, using a ruled grid placed under 
the transparent inclined plane. 

A series of experiments was conducted with a fixed-flux release from a constant- 
head reservoir onto an inclined glass plate about 1 m in length. The development of 
the downslope and cross-slope extent of the flows in eight of these experiments 
(Experiments 1-8) is shown in figure 9 normalized by the timescale T* and 
lengthscales X* and Y* defined by (2.6). As suggested by the theory, these scalings 
collapse the data from the different experiments and the results are then seen to be 
in quite good agreement with a numerical solution of (2.8). The observed downslope 
extent is, however, systematically a little greater than predicted by the theoretical 
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FIGURE 10. Measurements of the shape of a visrous flow from a constant-flux point source in 
Experiment 1. together with predictions obtained from numeriral solution of (2.8). The shape is 
shown at 32 s (0). 59 s (a), 122 s (A), 271 s (A), 486 s (0) and 727 s (m) after the initiation of 
the flow. 

calculation and the cross-slope extent a little less than predicted. Thc same trend 
may be seen in figure 10 which compares the perimeter of the flow in Experiment 1 
with the results of calculation a t  a number of times. Though the agreement is initially 
excellent, at later times the downslope flow is increased experimentally at the 
expense of the cross-slope flow. 

Careful examination of these results, and those from some experiments at lower 
flow rates not shown in figure 10, shows that the difference between theory and 
experiment decreases with increasing flow rate and with decreasing surface tension? 
and is independent of the fluid viscosity. This strongly suggests that the difference 
may be ascribed to interfacial effects. As the flow thins and the buoyancy forces 
driving the cross-slope flow become weaker, surface-tension forces a t  the contact line 
will increasingly impede the cross-slope spread and hence channel the flow downslope. 

In  order to test this hypothesis, a series of expcriments (Experiments 9-13) was 
conducted in which the viscous flow was established under water rather than in air. 
Viscous syrup was injected by a peristaltic pump at a constant flow rate through a 
hole in the sloping base of a Perspex tank filled with water. The syrup was miscible 
with water, more dense and much more viscous. In  these experiments, therefore, 
interfacial forces were eliminated from the upper surface of the current and the flow 
should be described by (2.3) in which ,u is the viscosity of the syrup and g is replaced 
by the reduced gravity g' = g(p-pw) /p .  It is thought that  diffusion of water into thc 
syrup was not significant on the timescale of the experiment. The results, shown in 
figure 11, are in good agreement with the theoretical predictions and do not display 
the systematic bias of the experiments conducted in air. We conclude that the 
analysis given in 992 and 4 provides a good description of viscous flows on a slope 
where interfacial effects are absent or small. 

Finally a series of experiments (Experiments 14-22) investigated the spread of a 
constant volume of fluid on a slope. In some of these experiments the fluid was 
initially held within a cylindrical barrier which was raised to commence the flow ; in 

t The coefficient of surface tension for glycerol is roughly three times tha t  of silicone oil 
(Huppert 1982b). 
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FIGURE 1 1 .  The dimensionless downslope and cross-slope extents, X,(T)  and Y,(T),  of viscous flows 
from a constant-flux point source in Experiments 9-13 and from solution of (2.8). The flows were 
all under water. The parameters and symbols used are summarized in table 2. 

ot,hers the fluid was simply poured onto the plane during the first few seconds of the 
experiment. However, the method of release had very little effcct on the subsequent 
flow. The scaled measurements of the extent of the current are shown in figure 12 
together with the theoretical prediction obtained by integrating (2.8) numerically. 
The agreement is reasonably good, though, as for the constant-flux releases in air, 
there is a systematic tendency for the downslope extent to  be larger and the cross- 
slope extent to be smaller in the experiment than the theory. Again, this is thought 
to  be due to  the influence of interfacial effects near the contact line. 

In a few trial experiments with smaller volumes of fluid, the front of the current 
was observed to develop an instability which led to the formation and growth of a 
rivulet extending downslope from the nose (figure 13). This phenomenon was also 
observed by Huppert (1982 b, figure 1 b )  and is due to  the same capillary instability 
that causes the front of a two-dimensional current to  break into a series of rivulets 
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FIGURE 12. The dimensionless downslope and cross-slope extents, X , ( T )  and Y,(T),  of viscous flows 
from a constant-volume release in Experiments 14-22 and from solution of (2.8). The flows were 
all in air. The parameters and symbols used are summarized in table 2. 

(Huppert 1982 b,  figures 1 c 3 ) .  By observing the appearance of perturbations to the 
previously straight front of the two-dimensional current, Huppert was able to show 
that the onset of instability occurred when the length of the current was proportional 
to the square root of its volume. However, in the present case, in which the contact 
line is curved even before instability, it was not possible to locate the onset of 
instability with sufficient precision to identify an instability criterion, though it is 
clear that instability occurs later if the volume of the current is increased. 

6. Discussion 
We have analysed the flow of viscous fluid on a slope using lubrication theory and 

derived solutions for the shape and rate of spread of the current. These solutions are 
found to give very good agreement with experimental observations provided that 
surface tension and contact-line effects are dominated by buoyancy and the flow is 
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FIGURE 13. The development of a capillary rivulet a t  the downslope nose of a fixed-volume flow of 
syrup on an inclined Perspex plane. The photographs are a t  (a) 160 s, ( b )  280 s ,  ( c )  440 s, (d) 580 s 
and (e) 720 s after the initiation of the flow and the capillary instability seems to occur near the time 
of (b). The grid spacing is 5 cm and the volume of the flow is about 550 cms. 

governed by a simple viscous-buoyancy balance as envisaged by the theory. This will 
indeed be the case if the viscous flow is miscible with its surroundings or if the volume 
of the flow is sufficiently large, for example, as in geological applications (Huppert 
et al. 1982; Kerr & Lister 1987). 
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When interfacial forces do play a role, they inhibit cross-slope spread, channelling 
the flow downslope. At very long times, when the current is thin and slowly moving, 
a capillary instability may develop a t  the downslope nose of the current, leading to 
the growth of a capillary rivulet. Detailed analysis of these effects is likely to prove 
very difficult since it involves a singular perturbation of the viscous-buoyancy 
balancc, which, as has been shown, itself involved a number of subtleties. Thus the 
usual problems associated with modelling a moving contact line will be compounded 
by the complexity of the solution of the unperturbed flow. Similarly, it may prove 
difficult to analyse the consequences of a non-Newtonian or temperature-dependent 
viscosity as a model, for example, of a solidifying lava flow. 

The solution for flow from a point source on an inclined plane displays features 
from both the solutions for flow on a horizontal plane and for flow from a line source 
on an inclined plane. The equations describing flow on a horizontal surface are 
parabolic allowing Huppert (1982 a) to obtain a similarity solution by integrating 
from an expansion about the contact line toward the source. The equations 
describing flow from a line source on a slope are hyperbolic and the similarity 
equation (3.1) must be integrated from the source to a downslope shock. The 
equation governing long-time flow from a point source is mixed in type, and the 
similarity equation (4.4) is itself parabolic with the timc-like direction being +< in 
some regions of the flow and -6 in others. Physically, this shows that the flow is 
influenced by both source conditions and the location of the contact line. The former 
are dominant in the near-source solution (4.3), whereas the latter is dominant in the 
regions covered by a draining film (a < 1). This interplay between information 
propagating from the source and from the contact line is the origin of much of the 
complexity of the flow and the need for numerical solution. 

Some features of the results are pleasantly simplc. These include the scalings (2.6) 
and (2.7) which capture both the short-time and long-time behaviour, the universal 
structure (4.3) for the flow near a point source and the simple form (y( < cx3a’(4a+3) of 
the area finally wctted when 0 < a < 1 .  However, though the power-law dependence 
of the downslope and cross-slope extent of the flows with a > 0 is similar to that 
found in previous similarity solutions for gravity currents in other situations (Fay 
1969; Buckmaster 1973; Grundy & Rottman 1986; Huppert 1982a; Lister & Kerr 
1989), the occurrence of terms in In t for the spread of a constant volume of fluid from 
a point source is somewhat unexpected. The local non-uniformities in the asymptotic 
similarity solution at thc stccp downslope front and at  thin draining films upslope 
have no counterparts in flows over a horizontal surface. We conclude that the 
solutions for the long-time behaviour of flows on an inclined plane display surprising 
structure. 

I am very grateful to M. A. Hallworth and H. E. Huppert for their generous 
provision of data from a series of experiments they had conducted. An earlier version 
of this manuscript benefitted from constructive comments by R.  T. Bonnecaze, 
R. W. Griffiths, H.  E. Huppert and R. C. Kerr. This project was begun during an 
enjoyable stay as a Postdoctoral Fellow a t  thc Research School of Earth Sciences, 
Australian National University, and my own cxperimcnts were aided by the 
admirable facilities and technical support t h e n  
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Appendix A. The numerical scheme 
Numerical solutions to (2.8), (4.1), (4.4) and (4.7) were computed using a finite- 

difference scheme on a rectangular grid. The equations were written in flux- 
conservative form and the spatial derivatives in the advective and diffusive terms 
were represented by the Il'in scheme, which combines centred and upwind 
differencing (Il'in 1969; Clauser & Kiesner 1987). In the cases of (4.4) and (4.7) a 
small amount of numerical viscosity in the [-direction was added to smooth spatial 
oscillations a t  the downslope shock. Time-stepping was performed using an 
alternating-direction-implicit method, with evaluation of the non-constant coeffi- 
cients at  the midpoint of the time-step. The discretization was thus second-order 
accurate in both space and time, and differs from that used by Schwartz & 
Michaelides (1988) and Schwartz (1989) primarily in the treatment of the spatial 
derivatives. The accuracy of the solutions was checked by comparison with the 
analytic solutions of Smith (1973) and Huppert (1982a), by grid refinement, and, 
where applicable, by variation of the amount of artificial viscosity. 

Appendix B. The long-time solution for a = 0. 
In 54.4 we argued that the solution of (4.7) approaches a quasi-steady state in 

which the interior solution (4.9) is matched to a boundary layer which slowly 
redistributes fluid around the perimeter of the flow from the nose to the sides. As a 
result, tN decreases and rM increases with s as the shape of the flow evolves in ( 6 , ~ ) -  
space. We now show that as s+ 00 the flow occupies the region 0 < C; < tp, where tp  
is of the form 

EP(7, = tN(").f(&) (-7M < 7 < 7M) (B 1) 

and EN(s), v,(s) and f are functions which are determined by consideration of the flux 
in the boundary layer. 

The structure of the boundary layer is obtained by transformation into coordinates 
which are locally tangential and normal to the contact line a t  ([p(q,s),q).  We find 
that the leading-order approximation of (4.7) within the boundary layer is given by 

(itPq5 - q53)' = (%P/a17)2 (q53q5')', (B 2) 

where primes denote differentiation with respect to the normal coordinate. This 
equation is of the same form as (3.6), showing that the boundary-layer profile is given 
by (3.7), where q5N = (itp); and x is the distance from the contact line scaled by the 
boundary-layer width 6 = q5N(Clcp/a7)2. We note that 6 < tp since i3tp/i3q < 1 as 
s + 00. Hence, the variation of q5 across the boundary layer is much greater than that 
along the boundary layer, and the contours of q5 within the boundary layer are nearly 
parallel to the contact line. It follows that the total flux in the 7-direction is given 
bv 

where the integrals are taken along a contour crossing the boundary layer. 
Owing to this lateral flux, the region occupied by the interior solution evolves with 

time. By substituting (4.9) and (B 1) into the volume constraint Jq5 = 1, we obtain 
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showing that 7M ch is constant. Now, by conservation of volume, F(7’, s) is equal to 
the rate of decrease of the volume in 0 < 7 < q’. Thus from (B 1) 

where the dot denotes differentiation with respect to s. 

to 7 to obtain 

where the integration constant c(s) is determined by (B 4). We conclude that the 
long-time solution of (4.7) is given by the interior solution (4.9) matched to the 
boundary-layer profile ( 3 . 7 )  along the perimeter (B l ) ,  where 

We equate the expressions (B 3 )  and (B 5 )  for the flux F and integrate with respect 

( ~ ~ P ) ” + ~ v ~ ( ~ M / v M )  = ~ ( s ) ,  (B 6) 

These results have been verified numerically. There is a small region near 7 = qM 
where atp/arj is not small and the boundary-layer analysis given here breaks down. 
However, this region has no effect on the asymptotic evolution of the rest of the flow. 
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